
Не тратим время на Docker: контейнеры systemd-nspawn

Новоселов Михаил Евгеньевич, АО «НТЦ ИТ РОСА», г. Москва, ул. Марксистская, д. 3,
стр. 7, m.novosyolov@rosa.ru

Обычно словосочетание «контейнер в Linux» ассоциируется с программным
обеспечением Docker.

Контейнеризация позволяет:
• минимизировать нагрузку: поскольку контейнеры используют ядро ОС хоста, они

занимают гораздо меньше места и требуют значительно меньших ресурсов для своего
функционирования;

• минимизировать сроки развертывания: контейнеры создаются и уничтожаются почти
мгновенно, что делает их хорошо подходящими для краткосрочных рабочих нагрузок
и кратковременных тестов;

• обеспечить совместимость: образы Docker стандартизированы и переносимы
практически на любую систему Linux, что облегчает миграцию и использование
нескольких сред одновременно,

• достичь высокой производительности в сочетании с высокой плотностью размещения
рабочих нагрузок на узле: контейнеры работают производительнее, чем виртуальные
машины, так как непосредственно взаимодействуют с системой хоста, обходя
необходимость виртуального уровня гипервизора.
Среди причин распространенности именно Docker в качестве средства

контейнеризации можно выделить:
• автоматизация жизненного цикла: более-менее воспроизводимая сборка контейнера по

Dockerfile и переносимость результата;
• отсутствие необходимости проектировать сложную инфраструктуру;
• возможность взять и запустить готовый контейнер, не вникая в его устройство и не

задумываясь о воспроизводимости его сборки;
• большое сообщество: готовые интеграции со множеством другого программного

обеспечения, Docker’у обучают на большинстве онлайн курсов — легко найти хотя бы
немного знакомых с ним людей.

Однако у Docker есть серьезные недостатки, например:
• высокий порог входа: чтобы не просто копировать и вставлять команду запуска

готового контейнера, а хотя бы приблизительно понимать, как его собрать, как
устроено хранение данных, каков набор технологий для запуска контейнера и т. д.,
нужно изучить большой объем информации;

• Docker предназначен только для запуска одного процесса в контейнере, а не запуска
всей ОС целиком, как в виртуальной машине — состоящие из множества компонентов
задачи приходится разбивать на несколько контейнеров, даже если это неудобно и не
повышает защищенность;

• по умолчанию изолированные в контейнере процессы запускаются от root, user
namespaces не используются, в случае нарушения изоляции можно получить root-
доступ к хосту изнутри контейнера.

Инструмент systemd-nspawn позволяет:
• работать с контейнером как с виртуальной машиной, запуская несколько сервисов в

одном контейнере (например, MySQL и веб-сервер);
• работать с контейнером как с обычной ОС и обычными файлами, не переусложняя

образами, сложной системой хранения и т. п.;

• изолировать с использованием пользовательских пространств имен (user namespaces):
root в контейнере не является root на хосте, став root в контейнере не станешь root на
хосте;

• организовать резервное копирование контейнеров как обычных файлов: тарболлы,
squashfs, rsync, снимки BTRFS и др.;

• использовать контейнеры и понимать, что делаешь, не изучив Docker и огромный
пласт технологий.

В докладе будет рассмотрен systemd-nspawn как инструмент контейнеризации рабочих
нагрузок, будут приведены примеры и опыт его использования. Отдельно будут затронуты
вопросы обеспечения должной изоляции и защиты при использовании таких контейнеров.

