
Разработка DRM-совместимых дисплейных драйверов для микроядерной ОС

Молодяков Д.С. Denis.Molodyakov@kaspersky.com

АО «Лаборатория Касперского», Россия, Москва, 125212, Ленинградское шоссе, д.39А c1

В процессе разработки дисплейных драйверов для операционных систем общего

назначения возникает множество сложностей, среди которых – определение

универсального интерфейса для взаимодействия с вышестоящим уровнем

(инфраструктура, прикладное ПО). Среди ОС с к открытым исходным кодом можно

выделить Linux, Android и Fuchsia. ОС Fuchsia имеет относительно небольшое количество

инсталляций на платформы, ее технические решения не отработаны и трудно оценить,

насколько они являются удачными. Linux и Android представляют больший интерес.

Модель Android имеет существенный минус – закрытые компоненты рендерной части. В

KasperskyOS в качестве пробной попытки был выбран интерфейс DRM (Direct Rendering

Manager) из Linux. В докладе отражен опыт разработки и портирования видео-драйверов в

KasperskyOS под этот интерфейс.

Общие сведения о DRM/KMS

За доступ к ресурсам видеокарты в Linux-системах отвечает компонент ядра DRM.

DRM (графический стек в целом) условно можно поделить на две функционально разных

части – рендерная (render path) и часть, отвечающая за вывод картинки и управление

устройством отображения (display path). Render path останется за рамками, а display path

посвящен настоящий доклад, куда входят дисплейные драйвера и та часть монолитных

драйверов, которая отвечает за работы с дисплеями.

 KMS device model – подсистема DRM, определяющая модель конвейера

отображения (display pipeline). Эту модель должны имплементировать все DRM-

совместимые драйвера, которые предоставляют возможность управления режимами

отображения. Planes, CRTCs (Cathode-Ray Tube Controller), Encoders, Connectors, и т.д. –

основные логические блоки, определяющие структуру конвейера отображения. Ниже будет

показано как реализации дисплейных драйверов в KasperskyOS под различные устройства

имплементируют эту модель.

Рис.1 Реализация графического стека в KasperskyOS

Примеры реализация дисплейных драйверов в KasperskyOS

mailto:Denis.Molodyakov@kaspersky.com

• Intel UHD Graphics. Intel во многом определил облик графического стека в Linux, в

т.ч. модель конвейере отображения. Аппаратные блоки дисплейного контроллера

практически полностью соотносятся с логическими блоками модели KMS. В

докладе отражена архитектура аппаратуры дисплейной части на примере одной из

моделей графического ускорителя intel.

• BGA (Bochs Graphics Adapter). Простейший вариант контроллера дисплея. По

умолчанию эмулируется qemu для платформы x86_64. Предоставляет доступ к

фреймбуферу (LFB - Linear FrameBuffer). Практически все логические блоки модели

KMS эмулируют работу аппаратуры. В докладе представлена архитектура

программной реализации драйвера.

• Virtio GPU. Драйвер паравиртуализованной видеокарты. Используется для работы

ОС в качестве «гостя» под эмулятором (например, qemu). Для вывода изображения

и рендеринга используется видеокарта хоста. Данные для вывода на экран

кодируются в драйвере гостевой ОС и декодируются на стороне эмулятора в

соответствии с спецификацией virtio. В докладе представлена структурная схема

работы графического стека с virtio GPU драйвером.

• MediaTek. Аппаратный конвейер отображения довольно сложен. Простейший путь

вывода изображения на экран включает аппаратные блоки: Overlayer, блоки

коррекции изображения (Color correction, Gamma correction и пр.), RDMA, DSI. В

докладе представлена архитектуры аппаратной части и программной реализации.

Особенности дисплейных драйверов для микроядерной архитектуры

Все компоненты системы изолированы, взаимодействие осуществляется через

механизм IPC, что накладывает определённые ограничения:

• Временной лаг на взаимодействие с компонентами платформы.

• Передача параметров by-value. В KasperskyOS нет механизмов copy-from-user/copy-

to-user. Передача параметров происходит по значению,

• Обработка прерываний происходит в user space. Особенно это важно для обработки

событий hot-plug – подключение/отключение дисплея.

• Контроль за трансфером данных, в т.ч. объектов видеопамяти, между драйвером и

клиентами берет на себя монитор безопасности KasperskyOS,

• Управление доступом клиентов к функциональным возможностям драйверов можно

регулировать посредством политик безопасности.

Выводы

Разработка драйверов под интерфейс графического стека Linux дает огромные

преимущества в плане совместимости с прикладным ПО – фреймворки, композиторы и пр.

Однако модель KMS в значительной мере ориентирована на аппаратную архитектуру intel

и на рассмотренных платформах, за исключением intel, затрудняет построение «чистой»

архитектуры драйвера, требуя эмуляцию работы некоторых блоков конвейера

отображения.

Функционирование драйверов в пользовательском пространстве и изоляция

компонентов накладывают ограничения на взаимодействие с прикладным ПО –

существуют дополнительные временные штрафы на коммуникацию компонентов в момент

инициализации и смены режимов отображения. Поскольку инициализация происходит

однократно, а смена режимов не является часто выполняемой операцией в прикладных

сценариях, можно говорить о незначительном влиянии таких временных штрафов на

функционирование системы. Кроме того, изоляция компонентов позволяет более

гранулярно контролировать потоки данных и регулировать права доступа к

ресурсам/сервисам через политики безопасности.

