Samsung R&D Institute Russia
Center of System Software

Debugging and Profiling
NET applications in Tizen OS

Dmitri Botcharnikov



Agenda

* What is Tizen

o NET for Tizen

e Tizen Extension for Visual Studio
e Tizen .NET Debugger internals

e Tizen .NET Profiler internals
 Future plans



Tizen OS

TIZEN, Connect Everything

Openness, Optimization, and Opportunities

2

Mobile Wearable TV

e Open OS based on Linux: kernel + libraries

* Runs on million devices: Smart TV, Smart
Watches, Smartphones

e Flexible, configurable



Application Development

A
HTML N

E HTML5 |OR| N\ CandEFL |?

Zrepvt o

{,’{TIZEN' @ Xamarin b VisualStudio  [NE]
Visual Studio integration

Tizen Emulator
Xamarin.Forms
.NET Core

Tizen platform-specific API




Tizen .NET for Visual Studio

Tizen .NET

Developer Preview 3

Now build Tizen applications using .NET with Visual Studio

» Application templates

e Emulator Manager
 Certificate Manager

e Smart Debug Bridge

* .NET Debugger for Tizen
e .NET Profiler for Tizen

o httrn'//dAavalAnar fivysan Ara



NET Debugger for Tizen

» Challenges in debugging dynamic
languages
* Debugger architecture

 Components of .NET Debugger
- GDBJIT
- GDB/MI

e Demo



C# Compilation & Execution

' CLR

» Language-specific compiler: C# => MSIL
 CLR JIT compiler: MSIL => native code

C# source




Debugging Challenges

* Source code to native code mapping
> C# compiler generates debugging information
for source code to MSIL mapping

 Stepping in and over
> Stepping into not yet compiled code
> Managed exception handlers
> Lambdas, closures & iterators
* Local variables & arguments inspection

o C# compiler generates debugging information
for MSIL variables



Tizen .NET Debugger

-~

Host

Visual Studio

2015

MIEngine

~

o

GDB/MI

A

Smart Debug
Bridge

GDB/MI
through SDB

/ Remote target

.NET

application

JIT/Call

GDB JIT

Debug

J

> LLDB-MI

CoreCLRVM

LLDB-
server

-

/




LLDB

» Subproject of LLVM (http://lldb.llvm.org)

» Native debugger builds on LLVM and
Clang libraries

» Supports X86 and ARM architectures



GDB JIT Interface

* Interface for registering || Ted code with
debuggers
* VM should construct in-memory

ELF+DWARF image and call predefined

function
o jit_debug register code

* Debugger puts breakpoint on this
function
* On breakpoint hit loads constructed

image and resume execution
* GBD JIT drawbacks:



GDB/MI & Microsoft MIEngine

* GDB/MI: machine oriented text interface

» Supported by Eclipse CDT, Emacs &
others

e Visual Studio M| Debug Engine is an open
source VS extension that provides
support for GDB/MI

* Modified to support Tizen Application
Framework



Demo time

’sxn Portal My nume'rumer‘

| ek pﬂh&l n,namm




NET Profiler for Tizen

e Profiler architecture

o NET Profiler infrastructure

* Linux Trace Toolkit Next Generation
e Demo



Profiler Architecture

/ Host \ / Remote target \
Visual Studio NET
2015 application

Profiler GUI

LTTng tracing
framework

CoreCLRVM

SDB protocol

A
Smart Debug > Profiler
Bridge \ /




NET Profiling Infrastructure

|CorProfilerCallback3

Profiler

* CoreCLR expects profiler to implement

|CorProfilerCallback

* VM calls profiler through this interface at

appropriate time

|CorProfilerinfo3

O_

!

@

-

N

4

e Profiler can use |ICorProfilerInfo for more

info



Linux Trace Toolkit Next Generation

Tracing session mySession
Tracing domain log4j

Tracing domain userspace Default channel
i Sub-buffers containing
Channel myChannel {r‘\ ﬂ_'lfﬂf'ftl’_mrdf R
. Sub-buffers containing &ﬁ ;.‘-ul:—u EIP;.:: p"lr:\::-ls\. '
event records
- r{ﬁ s.'l-‘o [:IEr (._"-‘-l.' ting .IJ.."fc.r Event rule
el ] per user or per }”(.-C 255 ) Evem AT is;w"pp’mwhm
Event rule ‘ p \
Event name is: myApp:readCfg Event rule
p Event name is: org.app.ReqHdl
Bt | ‘
Event name matches: myDb:onQuery* -
. | AND log level is as severe as: INFO ) Event rule -
LT Tng is an open source e
Event rule BUT is not: com.server.CreatelUser
. . Event name is: myApp:startup AND log level is exactly: INFO
toolkit for tracing kernel, A ]
Tracing domain kernel
L] L] L] L]
aP P I I catl O n S an d I I b ra rl e S Channel lowThroughput Channel highThroughput |
Sub-buffers containing Sub-buffers containing
event records event records

One per-CPU ring buffer
Per User Or per process

One per-CPU ring buffer
PEr user or per process

@

S
' Event rule

Instr. point type is: Tracepoint
AND event name is: sched_switch

VM generate events

Event rule

Instr. point type is: Tracepoint
AND event name matches: usb_control_*

collected by session

Event rule

Instr. point type is: Tracepoint
AND event name is: gpio_direction

daemon

Instr. point type is:  System call

Event rule
AND event name is: read OR write

http://lttng.org

-

Disabled
event rule

/

-

Disabled
channel

/



Demo time




Results & Future Plans

 Tools run on Z300 ARM Tizen phone and
on x86/x86 64 Tizen simulators

* Finish development of C# language type
plug-in and .NET runtime plug-in for
LLDB

> Get LLDB knows about C# type system

> Generic instantiation types available during
method execution

> Better support for CoreCLR stubs
* Develop full-fledged Historical debugger
 Refine profiler implementation



Thank you!




Dynamically compiled languages

Js a

python

e Dynamically (Just-In-Time) compiled
languages

* VM manages low-level details: memory
allocation, exception handling

 But for debuggers...



SOS debugger plug-in

¢ Plug-in for LLDB (libsosplugin.so,
libsos.so)

* Port of SOS.dIl (SOS Debugging
extension) to Linux platform

* Provides low-level information about
internals of CLR environment

o Useful for CoreCLR developers, but not
so for application developers



GDB JIT: Pro & Cons

* Pro
> Supported by both GDB and LLDB
> Integrated into debugger infrastructure
> The easiest way to add support for JITed
language
e Cons
° Invasive (only needed for debugging)
> Memory consuming (~700 b on ARM, ~lkb
on x86_ 64)
° Inherently static: generated before execution



Stepping over and in

 Stepping in and over
> Stepping into still not compiled code
> Managed exception handlers: stack unwinding
> Lambdas, closures & iterators

e CoreCLR implements calls through stubs
dispatch which is dynamically changed

e Solution
> Generate symbols for stubs in GDB JIT in-
memory image
> Modify LLDB thread plans to follow these
symbols



Visual Studio Extension

»
. 18
z =
g i
nc
[
b
E
(]
" i ™ s s 522 Bi mm s 10 0
Time ms
Timlne

............

nnnnnnnnnn

8 Couastion

* Profiler control to start/pause/stop
execution of app under profiler

» Collection of profiler info from target

* Profiler GUI for parsing and display
collected info



Historical debugging PoC

* Allows you to move backward and
forward through the execution of your
application and inspect its state

* Implemented in CoreCLR through
|CorProfiler interface

* Requires implementation of platform-
specific profiler hooks (OS + arch)

* Developed Proof-of-Concept realization
for ARM & x86 64 Linux



