
Debugging and Profiling
.NET applications in Tizen OS

Dmitri Botcharnikov

Samsung R&D Institute Russia

Center of System Software

1

Agenda

 What is Tizen

 .NET for Tizen

 Tizen Extension for Visual Studio

 Tizen .NET Debugger internals

 Tizen .NET Profiler internals

 Future plans

2

Tizen OS

 Open OS based on Linux: kernel + libraries

 Runs on million devices: Smart TV, Smart

Watches, Smartphones

 Flexible, configurable

3

Application Development

• Visual Studio integration

• Tizen Emulator

• Xamarin.Forms

• .NET Core

• Tizen platform-specific API

4

HTML5 C and EFL OR ?

Tizen .NET for Visual Studio

 Application templates

 Emulator Manager

 Certificate Manager

 Smart Debug Bridge

 .NET Debugger for Tizen

 .NET Profiler for Tizen

 http://developer.tizen.org
5

.NET Debugger for Tizen

 Challenges in debugging dynamic

languages

 Debugger architecture

 Components of .NET Debugger
◦ GDB JIT

◦ GDB/MI

 Demo

6

C# Compilation & Execution

 Language-specific compiler: C# => MSIL

 CLR JIT compiler: MSIL => native code

C# source MSIL Output

Roslyn
CLR

JIT

7

Debugging Challenges

 Source code to native code mapping
◦ C# compiler generates debugging information

for source code to MSIL mapping

 Stepping in and over
◦ Stepping into not yet compiled code

◦ Managed exception handlers

◦ Lambdas, closures & iterators

 Local variables & arguments inspection
◦ C# compiler generates debugging information

for MSIL variables

8

Tizen .NET Debugger

9

Visual Studio

2015

MIEngine

Smart Debug

Bridge

.NET

application

CoreCLR VM

LLDB-MI

GDB/MI

GDB/MI

through SDB

Debug

JIT/Call

Host Remote target

LLDB-

server

GDB JIT

LLDB

 Subproject of LLVM (http://lldb.llvm.org)

 Native debugger builds on LLVM and

Clang libraries

 Supports X86 and ARM architectures

10

GDB JIT Interface

 Interface for registering JITed code with

debuggers

 VM should construct in-memory

ELF+DWARF image and call predefined

function
◦ __jit_debug_register_code

 Debugger puts breakpoint on this

function

 On breakpoint hit loads constructed

image and resume execution

 GBD JIT drawbacks:
◦ Invasive (only needed for debugging)

◦ Inherently static: generated before execution

11

GDB/MI & Microsoft MIEngine

 GDB/MI: machine oriented text interface

 Supported by Eclipse CDT, Emacs &

others

 Visual Studio MI Debug Engine is an open

source VS extension that provides

support for GDB/MI

 Modified to support Tizen Application

Framework

12

Demo time

13

.NET Profiler for Tizen

 Profiler architecture

 .NET Profiler infrastructure

 Linux Trace Toolkit Next Generation

 Demo

14

Profiler Architecture

15

Visual Studio

2015

Profiler GUI

Smart Debug

Bridge

.NET

application

CoreCLR VM

SDB protocol

Host Remote target

Profiler

LTTng tracing

framework

.NET Profiling Infrastructure

 CoreCLR expects profiler to implement

ICorProfilerCallback

 VM calls profiler through this interface at

appropriate time

 Profiler can use ICorProfilerInfo for more

info 16

Profiler VM

ICorProfilerCallback3 ICorProfilerInfo3

Linux Trace Toolkit Next Generation

 LTTng is an open source

toolkit for tracing kernel,

applications and libraries

 VM generate events

collected by session

daemon

 http://lttng.org

17

Demo time

18

Results & Future Plans

 Tools run on Z300 ARM Tizen phone and

on x86/x86_64 Tizen simulators

 Finish development of C# language type

plug-in and .NET runtime plug-in for

LLDB
◦ Get LLDB knows about C# type system

◦ Generic instantiation types available during

method execution

◦ Better support for CoreCLR stubs

 Develop full-fledged Historical debugger

 Refine profiler implementation
19

20

Thank you!

Dynamically compiled languages

 Dynamically (Just-In-Time) compiled

languages

 VM manages low-level details: memory

allocation, exception handling

 But for debuggers…

21

SOS debugger plug-in

 Plug-in for LLDB (libsosplugin.so,

libsos.so)

 Port of SOS.dll (SOS Debugging

extension) to Linux platform

 Provides low-level information about

internals of CLR environment

 Useful for CoreCLR developers, but not

so for application developers

22

GDB JIT: Pro & Cons

 Pro
◦ Supported by both GDB and LLDB

◦ Integrated into debugger infrastructure

◦ The easiest way to add support for JITed

language

 Cons
◦ Invasive (only needed for debugging)

◦ Memory consuming (~700 b on ARM, ~1kb

on x86_64)

◦ Inherently static: generated before execution

23

Stepping over and in

 Stepping in and over
◦ Stepping into still not compiled code

◦ Managed exception handlers: stack unwinding

◦ Lambdas, closures & iterators

 CoreCLR implements calls through stubs

dispatch which is dynamically changed

 Solution
◦ Generate symbols for stubs in GDB JIT in-

memory image

◦ Modify LLDB thread plans to follow these

symbols
24

Visual Studio Extension

 Profiler control to start/pause/stop

execution of app under profiler

 Collection of profiler info from target

 Profiler GUI for parsing and display

collected info
25

Historical debugging PoC

 Allows you to move backward and

forward through the execution of your

application and inspect its state

 Implemented in CoreCLR through

ICorProfiler interface

 Requires implementation of platform-

specific profiler hooks (OS + arch)

 Developed Proof-of-Concept realization

for ARM & x86_64 Linux

26

