
Debugging and Profiling
.NET applications in Tizen OS

Dmitri Botcharnikov

Samsung R&D Institute Russia

Center of System Software

1

Agenda

 What is Tizen

 .NET for Tizen

 Tizen Extension for Visual Studio

 Tizen .NET Debugger internals

 Tizen .NET Profiler internals

 Future plans

2

Tizen OS

 Open OS based on Linux: kernel + libraries

 Runs on million devices: Smart TV, Smart

Watches, Smartphones

 Flexible, configurable

3

Application Development

• Visual Studio integration

• Tizen Emulator

• Xamarin.Forms

• .NET Core

• Tizen platform-specific API

4

HTML5 C and EFL OR ?

Tizen .NET for Visual Studio

 Application templates

 Emulator Manager

 Certificate Manager

 Smart Debug Bridge

 .NET Debugger for Tizen

 .NET Profiler for Tizen

 http://developer.tizen.org
5

.NET Debugger for Tizen

 Challenges in debugging dynamic

languages

 Debugger architecture

 Components of .NET Debugger
◦ GDB JIT

◦ GDB/MI

 Demo

6

C# Compilation & Execution

 Language-specific compiler: C# => MSIL

 CLR JIT compiler: MSIL => native code

C# source MSIL Output

Roslyn
CLR

JIT

7

Debugging Challenges

 Source code to native code mapping
◦ C# compiler generates debugging information

for source code to MSIL mapping

 Stepping in and over
◦ Stepping into not yet compiled code

◦ Managed exception handlers

◦ Lambdas, closures & iterators

 Local variables & arguments inspection
◦ C# compiler generates debugging information

for MSIL variables

8

Tizen .NET Debugger

9

Visual Studio

2015

MIEngine

Smart Debug

Bridge

.NET

application

CoreCLR VM

LLDB-MI

GDB/MI

GDB/MI

through SDB

Debug

JIT/Call

Host Remote target

LLDB-

server

GDB JIT

LLDB

 Subproject of LLVM (http://lldb.llvm.org)

 Native debugger builds on LLVM and

Clang libraries

 Supports X86 and ARM architectures

10

GDB JIT Interface

 Interface for registering JITed code with

debuggers

 VM should construct in-memory

ELF+DWARF image and call predefined

function
◦ __jit_debug_register_code

 Debugger puts breakpoint on this

function

 On breakpoint hit loads constructed

image and resume execution

 GBD JIT drawbacks:
◦ Invasive (only needed for debugging)

◦ Inherently static: generated before execution

11

GDB/MI & Microsoft MIEngine

 GDB/MI: machine oriented text interface

 Supported by Eclipse CDT, Emacs &

others

 Visual Studio MI Debug Engine is an open

source VS extension that provides

support for GDB/MI

 Modified to support Tizen Application

Framework

12

Demo time

13

.NET Profiler for Tizen

 Profiler architecture

 .NET Profiler infrastructure

 Linux Trace Toolkit Next Generation

 Demo

14

Profiler Architecture

15

Visual Studio

2015

Profiler GUI

Smart Debug

Bridge

.NET

application

CoreCLR VM

SDB protocol

Host Remote target

Profiler

LTTng tracing

framework

.NET Profiling Infrastructure

 CoreCLR expects profiler to implement

ICorProfilerCallback

 VM calls profiler through this interface at

appropriate time

 Profiler can use ICorProfilerInfo for more

info 16

Profiler VM

ICorProfilerCallback3 ICorProfilerInfo3

Linux Trace Toolkit Next Generation

 LTTng is an open source

toolkit for tracing kernel,

applications and libraries

 VM generate events

collected by session

daemon

 http://lttng.org

17

Demo time

18

Results & Future Plans

 Tools run on Z300 ARM Tizen phone and

on x86/x86_64 Tizen simulators

 Finish development of C# language type

plug-in and .NET runtime plug-in for

LLDB
◦ Get LLDB knows about C# type system

◦ Generic instantiation types available during

method execution

◦ Better support for CoreCLR stubs

 Develop full-fledged Historical debugger

 Refine profiler implementation
19

20

Thank you!

Dynamically compiled languages

 Dynamically (Just-In-Time) compiled

languages

 VM manages low-level details: memory

allocation, exception handling

 But for debuggers…

21

SOS debugger plug-in

 Plug-in for LLDB (libsosplugin.so,

libsos.so)

 Port of SOS.dll (SOS Debugging

extension) to Linux platform

 Provides low-level information about

internals of CLR environment

 Useful for CoreCLR developers, but not

so for application developers

22

GDB JIT: Pro & Cons

 Pro
◦ Supported by both GDB and LLDB

◦ Integrated into debugger infrastructure

◦ The easiest way to add support for JITed

language

 Cons
◦ Invasive (only needed for debugging)

◦ Memory consuming (~700 b on ARM, ~1kb

on x86_64)

◦ Inherently static: generated before execution

23

Stepping over and in

 Stepping in and over
◦ Stepping into still not compiled code

◦ Managed exception handlers: stack unwinding

◦ Lambdas, closures & iterators

 CoreCLR implements calls through stubs

dispatch which is dynamically changed

 Solution
◦ Generate symbols for stubs in GDB JIT in-

memory image

◦ Modify LLDB thread plans to follow these

symbols
24

Visual Studio Extension

 Profiler control to start/pause/stop

execution of app under profiler

 Collection of profiler info from target

 Profiler GUI for parsing and display

collected info
25

Historical debugging PoC

 Allows you to move backward and

forward through the execution of your

application and inspect its state

 Implemented in CoreCLR through

ICorProfiler interface

 Requires implementation of platform-

specific profiler hooks (OS + arch)

 Developed Proof-of-Concept realization

for ARM & x86_64 Linux

26

