

Архитектура и реализация KasperskyOS Kaspersky Security System

Андрей Духвалов

Руководитель Департамента Перспективных Технологий Andrey.Doukhvalov@kaspersky.com

OSDay 2016, Иннополис

ТАК ЧТО ЖЕ ТАКОЕ БЕЗОПАСНАЯ ОС?

Принципы безопасности

- заложенные в архитектуру
- соблюдаемые при реализации и конфигурации системы

Реализация различных политик безопасности

- отвечающих потребностям всевозможных применений системы
- повторно используемых и сочетаемых между собой

Обеспечение высокой степени доверия

- к реализации системы путем проведения формальной оценки
- к реализации политики путем включения конфигураций в ТСВ

ЦЕЛЬ РАЗРАБОТКИ


Надежная платформа для разработки широкого спектра специализированных (програмноаппаратных) решений с высокими требованиями по информационной безопасности

СОДЕРЖАНИЕ

- > Основные архитектурные решения
- > Особенности реализации подсистемы безопасности
- > Преимущества и ограничения

ДВА ПРИНЦИПА

В основе системы

Микроядерная архитектура, реализующая разделение доменов безопасности

+

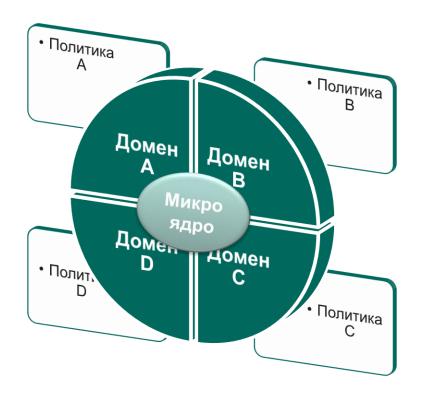
Выделенная подсистема безопасности, предназначенная для вычисления политик

ПРИНЦИП 1

Единый механизм межпроцессного взаимодействия (IPC)

Реализуется на уровне ядра Обеспечивает полноту контроля

МИКРОЯДРО



Реализует межпроцессное взаимодействие

Не существует способов взаимодействия в обход микроядра.

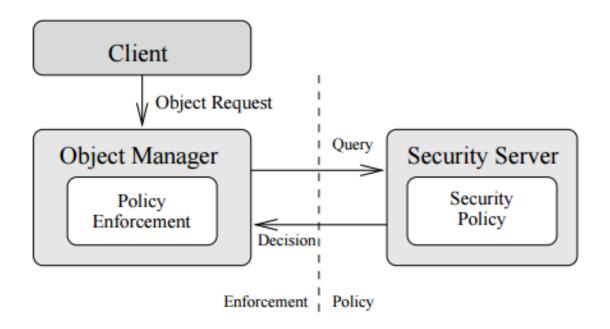
Взаимодействие синхронное (рандеву).

ЯДРО РАЗДЕЛЕНИЯ ДОМЕНОВ

Separation Kernel

Предназначено для эмуляции работы физически распределенной системы на одном процессоре (J.Rushby)

Реализация: микроядро/гипервизор


ПРИНЦИП 2

Выделенная подсистема безопасности

Гибкий контроль взаимодействия программных компонентов внутри информационной системы

АРХИТЕКТУРА БЕЗОПАСНОСТИ FLASK

https://www.cs.cmu.edu/~dga/papers/flask-usenixsec99.pdf

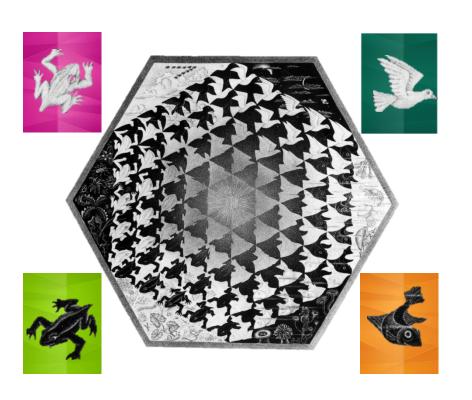
ОСОБЕННОСТИ РЕАЛИЗАЦИИ ПОДСИСТЕМЫ БЕЗОПАСНОСТИ

Ядро гибкой и эффективной защиты

НЕОБХОДИМОСТЬ СУЩЕСТВЕННО РАЗЛИЧНЫХ ПОЛИТИК

Для каждого устройства, системы, сети

Своя область применения

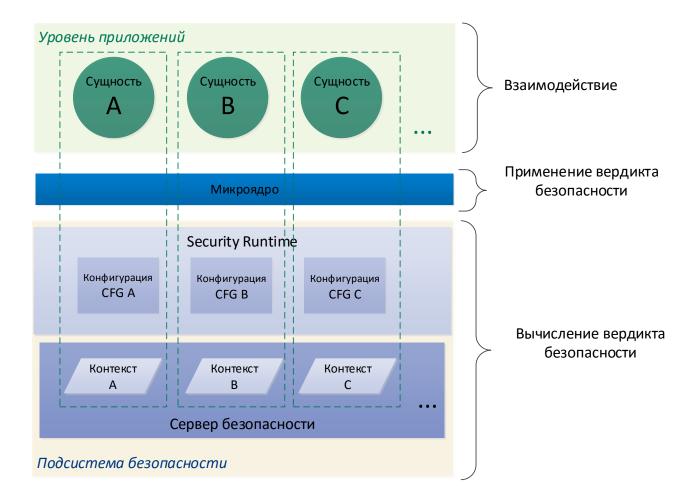

Свои цели

Своя политика безопасности

Своя степень принятия рисков

- связанная с доверием
- связанная со стоимостью защиты

УНИВЕРСАЛЬНАЯ ПОДСИСТЕМА БЕЗОПАСНОСТИ


Реализация правил безопасности

С возможностью комбинировать базовые и специализированные политики.

В соответствии с индивидуальными требованиями конкретной системы.

Без необходимости поддерживать ненужные механизмы и сложные конфигурации.

ТИПИЗИРОВАННЫЕ ВЗАИМОДЕЙСТВИЯ

Уникальное свойство KOS

Типизация в рамках единого канала согласно IDL-описаниям

Политики безопасности применяются в соответствии с типом взаимодействия

КОНФИГУРАЦИИ БЕЗОПАСНОСТИ

Определяют использование политик

Связывают типы взаимодействий и политики безопасности

Определяют реакцию на события безопасности

ВИДЫ СОБЫТИЙ БЕЗОПАСНОСТИ

Вызов подсистемы безопасности

В случае одного из событий:

- Запуск сущности (процесса)
- Обращение к сущности по IPC
- Вызов интерфейса безопасности

ПРЕИМУЩЕСТВА И ОГРАНИЧЕНИЯ KASPERSKYOS

Известные на данный момент

ПРЕИМУЩЕСТВО:ПОЛНОТА КОНТРОЛЯ

На всех уровнях

На уровне архитектуры: принцип полноты перекрытия (IPC)

На уровне реализации: открытый дизайн (компонентная модель)

На уровне конфигурации: принцип безопасных умолчаний (default deny)

ПРЕИМУЩЕСТВО: ГИБКОСТЬ КОНТРОЛЯ

На всех уровнях

На уровне архитектуры: расширяемый сервер безопасности

На уровне реализации: типизация межпроцессного взаимодействия

На уровне конфигурации: большое количество событий, поддающихся конфигурации

ПРЕИМУЩЕСТВО:ВЕРИФИЦИРУЕМОСТЬ

На всех уровнях

На уровне архитектуры:

Микроядерная архитектура, выделенное ТСВ

На уровне реализации:

Компонентная модель для приложений

На уровне конфигурации:

Декларативный язык конфигураций

ПРЕИМУЩЕСТВО:ПОДДЕРЖКА МАНДАТНОГО КОНТРОЛЯ ДОСТУПА

На всех уровнях

На уровне архитектуры:

Выделенная подсистема безопасности, обеспечивающая различные политики

На уровне реализации:

Прозрачный для приложений контроль на уровне внешних интерфейсов

На уровне конфигурации:

Жесткая конфигурация, включенная в ТСВ

ПРЕИМУЩЕСТВО:ОБЯЗАТЕЛЬНАЯ РАЗМЕТКА И КОНФИГУРАЦИЯ

На всех уровнях

На уровне архитектуры:

Жестко заданные конфигурации приложений

На уровне реализации:

Приложение без конфигурации его допустимого поведения не может функционировать.

На уровне конфигурации:

Аппаратные и прикладные ресурсы должны быть помечены атрибутами безопасности.

НЕДОСТАТОК: ОГРАНИЧЕНИЯ ЕДИНОГО ІРС

Обратная сторона полноты контроля

- Неполная POSIX совместимость
- Вопросы контроля доступа к ресурсам
- Вопросы производительности

НЕДОСТАТОК: ОГРАНИЧЕНИЯ ПОДСИСТЕМЫ БЕЗОПАСНОСТИ

Обратная сторона гибкости контроля

- Трудности корректного выбора политик (выход за пределы модели отказ)
- Жесткие конфигурации
- Вопросы кэширования вердиктов

НЕДОСТАТОК: СЛАБАЯ СВЯЗНОСТЬ СИСТЕМЫ

Обратная сторона поддержки мандатного контроля и строгого определения безопасности

Фактически две независимые системы

- среда выполнения приложений
- среда принятия решений синхронизация которых требует серьезной работы

основные особенности KasperskyOS

Архитектура на основе разделения доменов

- следствие единого IPC
- позволяет усилить информационную и функциональную безопасность

Выделенная подсистема безопасности

- реализует всевозможные политики безопасности
- политики повторно используемы и сочетаемы

Обеспечение высокой степени доверия

- микроядро и компонентная модель упрощают верификацию
- конфигурации безопасности являются частью ТСВ

KASPERSKY #

Архитектура и реализация KasperskyOS Kaspersky Security System

Андрей Духвалов

Руководитель Департамента Перспективных Технологий Andrey.Doukhvalov@kaspersky.com

OSDay 2016, Иннополис